If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x+2x=0
We add all the numbers together, and all the variables
x^2+6x=0
a = 1; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*1}=\frac{0}{2} =0 $
| 2x10=3x-15 | | 8=-4+h | | 8x+7x-22=44-7x | | 3/4x-1/4=4/3+2/3 | | (6x4)-5=(17-x)-5 | | 5x+8(x+2)=62 | | 4/5x=-14 | | 6(x-5)^2+48=0 | | 9=10x/6 | | (2x–5)(3x–1)=0 | | 1/4(p-8)=7 | | 8+3x+2=3x+4 | | -6=-7+z | | 6x-1=17x-3 | | (x-45)+(x-45)(x-45+x+x)=540 | | 8/5=12/x | | -3b-13+2b=7b-1 | | -9x-9+9x=-6x+9 | | 120÷q=40 | | 1/4(p-8=7 | | 250=650-8x | | 3(6-3p)+3(p-1)=-6p-5p | | (-5x)+17=35 | | x+12=7x+30 | | A-6=8-(9+a | | n2+19n+66=6 | | 4^x-1=12 | | 50-4x=120-24x | | 8y+-6=5y+12 | | 91=-7y | | -5(2x-1)-3x-4=-5 | | 2x+1/5=-1 |